Data Analytics

future of AI

The Future of AI in the Business World

future of AI

When it comes to the implementation of Artificial Intelligence (AI) in an enterprise, the world is at a crossroads. Although the technology that allows computers to mimic human thinking has advanced steadily over the last half-century, the Future of AI looks particularly promising. The cost-effectiveness of deployment, convenient access to cloud computing, and realistic business use cases are all positioned to help AI make a major impact in the business world in the coming years.

 

With the future use cases for AI in the industry on the way, and the capital investments and speed of progress currently powering AI, one thing is for sure: To realize the benefits flowing to the business world, you’ll have to get your framework in place relatively soon. But how are you going to do it? Business intelligence (BI) tools can help with this. Businesses can plan for the future while still taking full advantage of today by laying the groundwork with this readily available, open, and inexpensive software. Businesses are starting to question if it makes sense to move through an expensive deployment that won’t produce meaningful results for two or three years after having unrealistic expectations for AI, which have yet to emerge. Instead, they should concentrate on implementing BI today to get some quick results, then layering AI on top of existing BI data to extract new insights and generate greater value as the technology advances.

 

So, how can BI apps assist in preparing the company for AI, and what potential use cases can be derived from the combination of AI and BI?

Future of AI and What BI Software Do for You?

Whichever side of the Artificial Intelligence and Business Intelligence discussion you are on, one aspect is certain: you’ll need data to support both. There is no intelligence in AI or BI without data to operate on. There will be nothing to analyse or to which a learning algorithm can be applied. When it comes to intelligence solutions, data is the cornerstone that must be laid.

 

Data has never been more accessible in today’s business world due to the wider acceptance of cloud computing and the Internet of Things. However, the massive amounts of data produced every day are posing a new challenge for businesses: What knowledge is crucial? What are the best practices for tagging, sorting, grouping, and analysing data? What concerns are answered by disparate data points? How can data collection through various touch points, from retail to supply chain to a factory, be seamlessly implemented?

Data Warehouse

This is where data warehousing comes in. Data warehouses are a way of optimizing data obtained from various touch points, like point-of-sale, CRM, inventory, and warehouse management systems), structuring it to obtain needed insights, and running research. Enterprise companies cannot thrive without efficient data warehousing; data silos consume capital and resources quickly, and any company still attempting to piece together “business intelligence” from numerous reports and fragmented data will quickly fall behind those with centralized data and reporting. The integrated data warehouse, on the other hand, isn’t just a set of relational databases thrown together; it’s based on modern data storage systems like Online Analytical Processing (or OLAP) cubes.

 

Cubes are multi-dimensional data sets designed for analytical processing applications like AI or BI. Cubes are superior to tables in that they can connect and sort data across several dimensions, enabling non-technical users to access a wider wide range of role-specific and highly contextual data points to discover new insights and make real-time adjustments to strategies and decisions. Most non-technical sales agents and buying associates will struggle to link several tables along with a standard report, but with Business Intelligence cubes, all they must do is drag and drop the metrics and dimensions that apply to their own customized dashboard.

 

So, how do you get the data? SQL is a language for manipulating and extracting data from cubes. SQL was created as a common language for interacting with databases, irrespective of the type of database being used, and is ultimately the tool for extracting, retrieving, deleting, modifying, and handling data in a table.

Other Methods to Address Data Demands: The Future of AI

Aside from data warehousing and OLAP cubes that provide the technological base, there are a few other components that can assist enterprise businesses in meeting their data needs:

Data Modelling

Data modelling is a technique for sorting out individual data sources within an organization and deciding how they should communicate to obtain the most useful business insights. Data Modelling can be done at the conceptual (high-level, linked to business objectives), logical (mapping to each business function), and physical (how the actual measurements, metrics, and structures are related inside a data cube).

Analytics and Reporting

The ability to capture, structure and store data is essential, but the ability to analyse and report on it is the ultimate objective. End users can find the valuable insights they need with little technological expertise due to business intelligence solutions that provide easy, open analytics and reporting functions. It also facilitates business processes in avoiding unnecessary data bottlenecks by providing them with immediate access to the data they need.

Data Visualization and Dashboards

Business intelligence relies heavily on analytics and reports, but you are not alone if you have ever spent hours sifting through a table of values trying to find out what the data means. Important insights are presented in vivid graphical representations that are much easier for the user to understand using data visualization tools. According to Aberdeen Group research, businesses that use data visualization software are 28% more likely to find accurate information than those that depend entirely on controlled reporting; the same research also found that 48 percent of business intelligence users at companies with visual data exploration will find the information they need without the assistance of IT personnel. Dashboards can quickly compile visualizations and reports into customized displays for each end-user or business activity, by providing individuals with immediate access to KPIs that help drive improved business results from the ground up.

 

Protection, usability, and efficiency are three major benefits that business intelligence solutions help to drive, as well as three key indicators of enterprise business performance. Protection, usability, and efficiency are three major benefits that business intelligence solutions help to drive, as well as three key indicators of enterprise business success.

The Future of AI

Soon, AI algorithms will be expected to be efficiently implemented in your current data stores, providing you with even more insight. AI applications in line with business should fall into three categories:

Automated Processes

The most common use of AI in business right now is to automate systems and business processes. Although previous iterations of automation focused on sharing data between systems, AI can take this skill to the next level by interacting with data as if it were a person, either inputting or consuming as required. AI robots are now capable of analyzing legal contracts and extracting specific clauses, updating customer records through several networks, and automating customer outreach in response to changing

circumstances. Businesses will be able to automate even more processes as these algorithms become smarter.

Meaningful Insight

Cognitive insight is the ability to derive meaning and distinguish patterns from large amounts of data using AI algorithms. Although BI software and data stores will certainly include the “diet” for cognitive insight algorithms, as they learn, they will be ready to access those learnings to larger data sets, respond to new data in real-time, and recognize possible data matches across multiple platforms.

circumstances. Businesses will be able to automate even more processes as these algorithms become smarter.

Cognitive Engagement

The human-interfacing aspect of AI is referred to as cognitive interaction. Consider chat-bots, knowledge bases, and product recommendation engines, among other things. Externally (for customers) or internally (for employees), cognitive engagement technologies can be used to simplify the connection between users and systems. Since companies are still wary of the relatively new technologies, most existing applications concentrate mainly on internal engagement. However, as AI growth and implementations progress, objections are likely to fade away as companies discover new ways to use existing data to drive practical automated interactions with humans all over the world.

circumstances. Businesses will be able to automate even more processes as these algorithms become smarter.

Takeaway

The future of AI will eventually start to live up to its potential. We have been reading a lot about the excitement in the business world. Computers can assist in ushering in a new age. For cutting-edge businesses, a new age of growth and profitability awaits, but only if you have already laid the groundwork, which begins with business intelligence.

 

At Global Data 365, we understand that business intelligence and data management are essential components of every enterprise artificial intelligence strategy. To get the most out of artificial intelligence, you need to start with good reporting and analytics. So make sure you are laying the groundwork for your company’s future success today!

Get 30 days free license for Jet Reports

Share this blog on:

Search Blog

About Us

Global Data 365 is composed of highly skilled professionals who specialize in streamlining the data and automate the reporting process through the utilization of various business intelligence tools.

Follow us on:

Interact Live with Dashboards

Increase efficiency and deliver success now with Microsoft Power BI. Enjoy a 20% discount on all Power BI services.

dashboards

Subscribe to Our Newsletter

The Future of AI in the Business World Read More »

How Does Business Intelligence Help in Demand Forecasting

Business Intelligence Help in Demand Forecasting

How Does Business Intelligence Help in Demand Forecasting

Businesses are investing significantly in advanced analytics to maintain a competitive advantage and improve their result due to big developments in artificial intelligence and machine learning. Business Intelligence in Demand Forecasting is one of these fields where businesses extract information from existing data to assess purchasing patterns and predict future trends through predictive analytics.

 

Predictive analytics makes use of a combination of data, statistical algorithms, and machine learning approaches to predict the likelihood of future outcomes based on the past. Every sector, from banking to retail, uses this technology to assess consumer responses or orders, forecast inventory, manage capital, and even detect fraud. Predictive analytics is becoming more popular, even though it has been around for decades, thanks to increasing quantities of data and readily available tools ready for a transformation. 

 

Below we will look at how market intelligence can help with demand forecasting, a type of predictive analytics that focuses on consumer demand. We’ll go into what demand forecasting is, how it operates, and how to get started with it using business intelligence tools. 

What is Demand Forecasting?

Demand forecasting is a type of predictive analytics that focuses on predicting customer demand for products and services. It estimates potential demand based on historical data and current market conditions and sets the level of supply-side preparedness needed to match demand. 

 

Demand forecasting is important in production planning and supply chain management, even if it isn’t an acquired skill. Demand forecasting impacts everything from budgeting and financial planning to capacity planning, sales and marketing planning, and capital investment. 

Why Should You Use Demand Forecasting?

Manufacturers, distributors, and retailers use demand forecasting as an important part of supply chain planning to gain insight into their activities and make educated, efficient decisions about pricing, inventory stock, resource optimization, and more. 

Listed below are some major reasons why demand forecasting is so important in today’s supply chain: 

 

  • Increased customer loyalty (providing customers with the items they want, whenever they want it). 
  • Inventory management to minimize stock-outs and overstocking. 
  • Effective raw material and labor scheduling. 
  • Improved capacity planning and resource allocation. 
  • Better distribution planning and logistics. 
  • Affordable pricing and promotion. 

Use of Business Intelligence in Demand Forecasting

Data is used in demand forecasting. If the data you use is incorrect, the math and how you apply it will result in under or overestimated demand, leaving you with a slew of disgruntled customers or an overabundance of goods. Most businesses use a business intelligence solution to help with data planning, data co-ordination, and forecasting to better understand demand and supply. 

 

Business intelligence software is designed to capture, unify, sort, tag, analyze, and report on large volumes of data. Here are four main areas where market intelligence can help you get started with reliable demand forecasting: 

Data Preparation

Most businesses fail to cleanse, verify, and audit their data regularly. As a result, 40% of company data is either incorrect, incomplete, or inaccessible (Gartner). BI software allows you to organize and monitor your data in one place, ensuring that your analytics are based on reliable data. 

Data Collection

A data warehouse can assist you in gathering business data from a variety of sources and using it for accurate reporting and analytics. Data warehouse-powered BI will help correlate data from different systems to provide further visibility into the supply chain, revenues, and financials, among other items. 

Data Analysis

BI software is built for processing and measuring large quantities of data. Maintaining a system of records, which includes historical records and various data sources, ensures that all findings are based on the same version of the facts. 

Reporting and Analytics

With pre-built dashboards, BI software will give you a single view of results and reports for the rapid dissemination and exchange of real-time information on demand. This encourages better preparation and coordination between the teams. 

 

Improve your data quality and plan your data for reliable demand forecasting by learning more about what you need to do. At Global Data 365, we will analyze your current systems and show you how business intelligence will help you build the technology base for your company. 

 

Contact our team for more information! 

Talk to our BI Experts

Share this blog on:

Search Blog

About Us

Global Data 365 is composed of highly skilled professionals who specialize in streamlining the data and automate the reporting process through the utilization of various business intelligence tools.

Follow us on:

Interact Live with Dashboards

Increase efficiency and deliver success now with Microsoft Power BI. Enjoy a 20% discount on all Power BI services.

dashboards

Subscribe to Our Newsletter

Business Intelligence Help in Demand Forecasting Read More »

What are Data Lakes?

What are Data Lakes?

What are Data Lakes?

The huge volume of data collected by today’s company has entailed a drastic change in how that data is stored. Data stores have expanded in size and complexity to keep up with the companies they represent, and data processing now needs to stay competitive, from simple databases to data warehouses to data lakes. As enterprise businesses collect vast amounts of data from every imaginable input through every conceivable business feature, what started as a data stream has developed into a data flow.

 

A new storage solution has emerged to resolve the influx of data and the demands of enterprise businesses to store, sort, and analyze the data with the data lake.

What are Data Lakes?

Data Lakes are type of centralized repository that stores all types of data—structured, semi-structured, and unstructured—in its raw format. Unlike data warehouses, which standardize data before processing, a data lake holds data without any transformation, allowing for future analysis and exploration. This raw data can later be structured for specific purposes, making it a powerful resource for businesses that deal with diverse data sources like IoT devices or event tracking.

What Does It Contain?

The foundation of enterprise businesses is a collection of tools and functions that provide useful data but seldom in a structured format. The company’s accounting department may use their chosen billing and invoicing software, but your warehouse uses a different inventory management system. Meanwhile, the marketing team is dependent on the most efficient marketing automation or CRM tools. These systems rarely interact directly with one another, and while they can be pieced together to respond to business processes or interfaces through integrations, the data generated has no standard performance.

 

Data warehouses are good at standardizing data from different sources so that it can be processed. In reality, by the time data is loaded into a data centre, a decision has already been taken about how the data will be used and how it will be processed. Data lakes, on the other hand, are a larger, more unmanageable system, holding all of the structured, semi-structured, and unstructured data that an enterprise company has access to in its raw format for further discovery and querying. All data sources in your company are pathways to your data lake, which will capture all of your data regardless of shape, purpose, scale, or speed. This is especially useful when capturing event tracking or IoT data, while data lakes can be used in a variety of scenarios.

Benefits of Data Lakes

  • Versatility: Data lakes store data in any form—whether it’s CRM data from marketing or raw transaction logs from inventory systems.
  • Flexibility: Since data is stored in its original format, it can be processed, transformed, and analyzed whenever needed.
  • Scalability: Data lakes, like Azure Data Lake, handle data of any volume, shape, or speed, making them ideal for large-scale enterprises.

Application of Data Lakes

Data lakes find applications across multiple industries, enabling:

  • Healthcare: Early disease detection and personalized treatments.
  • Finance: Fraud detection and market trend prediction.
  • Retail: Customer behavior analysis and inventory optimization.
  • Manufacturing: Predictive maintenance and production workflow enhancements.

Data Collection in Data Lakes

Companies can search and analyse information gathered in the lake, and also use it as a data source for their data warehouse, after the data has been collected.

 

Azure Data Lake, for instance, provides all of the features needed to allow developers, data scientists, and analysts to store data of any scale, shape, or speed, as well as perform all kinds of processes and analytics across platforms and languages. Azure Data Lake simplifies data management and governance by eliminating the complications of consuming and storing all of your data and making it easier to get up to speed with the queue, streaming, and interactive analytics. It also integrates with existing IT investments for identity, management, and security.

 

That being said, storage is just one aspect of a data lake; the ability to analyse structured, unstructured, relational, and non-relational data to find areas of potential or interest is another. The HDInsight analytics service or Azure’s analytics job service can be used to analyse data lake contents.

Data Collection and Analysis

Data lakes are especially useful in analytical environments when you don’t understand what you don’t know with unfiltered access to raw, pre-transformed data, machine learning algorithms, data scientists, and analysts can process petabytes of data for a variety of workloads like querying, ETL, analytics, machine learning, machine translation, image processing, and sentiment analysis. Additionally, businesses can use Azure’s built-in U-SQL library to write the code once and have it automatically executed in parallel for the scale they require, whether in.NET languages, R or Python.

Microsoft HDInsight

The open-source Hadoop platform continues to be one of the most common options for Big Data analysis. Open-source frameworks such as Hadoop, Spark, Hive, LLAP, Kafka, Storm, HBase, Microsoft ML Server, and more can be applied to your data lakes through pre-configured clusters tailored for various big data scenarios with the Microsoft HDInsight platform.

Learn More About Microsoft HDInsight

Future-Proof Data

For companies, data lakes reflect a new frontier. Incredible possibilities, perspectives, and optimizations can be uncovered by evaluating the entire amount of information available to an organization in its raw, unfiltered state without expectation. Businesses may be susceptible to data reliability (and organizational confidence in that data) and also protection, regulatory, and compliance risks if their data is ungoverned or uncatalogued. In the worst-case scenario, data lakes will have a large amount of data that is difficult to analyse meaningfully due to inaccurate metadata or cataloguing.

 

For companies to really profit from data lakes, they will need a clear internal governance framework in place, as well as a data catalogue (like Azure Data Catalogue). The labelling framework in a data catalogue aids in the unification of data by creating and implementing a shared language that includes data and data sets, glossaries, descriptions, reports, metrics, dashboards, algorithms, and models.

Built your BI Infrastructure

The data lake will remain a crystal-clear source of information for your company for several years if you set it up with additional tools that allow for better organization and analysis, such as Jet Analytics.

 

At  Global Data 365, you can contact our team to find out more information on how to effectively organize your data or executing big data systems seamlessly.

Get 30 Days Free Jet Analytics License!

Share this blog on:

Search Blog

About Us

Global Data 365 is composed of highly skilled professionals who specialize in streamlining the data and automate the reporting process through the utilization of various business intelligence tools.

Follow us on:

Want to try Jet Analytics?

Get Free License for 30 Days
Jet Analytics Hero Section

Subscribe to Our Newsletter

What are Data Lakes? Read More »

Why Is Good Data Management Essential For Data Analytics

Why Is Good Data Management Essential For Data Analytics?

Why Is Good Data Management Essential For Data Analytics

Today, Businesses have more data at their disposal than ever before. Over time, businesses that can efficiently use data as a strategic advantage can eventually achieve a competitive edge and outperform their rivals. Business administrators, on the other hand, must add order to the chaotic world of various data sources and data models to do this. Data management is the general term for this method. Data management is becoming an essential component in successful business management as the amount of available data grows.

On the other hand, a lack of effective data protection can lead to incompatible or unreliable data sources, as well as data quality issues. These challenges can hinder an organization’s ability to derive value from data-driven insights, recognize patterns, and spot problems before they become major issues. Worse, bad data management can lead to managers making decisions based on incorrect assumptions.

Availability of Data

The emergence of systems, such as ERP, CRM, e-commerce, or specialized industry-specific applications, is causing such problems. When you add web analytics, digital marketing automation, and social media to the mix, the data volume skyrockets. When you add in external data from vendors and service providers, it becomes unmanageable.

 

Many businesses understand the importance of using externally sourced third-party data to supplement and extend the context of knowledge they already have. However, it’s difficult to imagine taking that step without first having a grasp on the organization’s current data. Bringing all of this uncertainty under control is a key first step in implementing a strategic data analytics program. That is a two-step method from a high-level perspective. To begin, you must collect all of the data and store it in a centralized location. This includes filtering, transforming, and harmonizing data so that it blends to form a coherent whole.

Secondly, the data must be available to users around the enterprise so that you can put it to good use and add value to the company. In other words, you must implement processes that allow users within the organization to access the information easily, efficiently, and with enough versatility that they can evaluate and innovate without extensive IT training. To ensure efficiency, you must identify and implement these two aspects of data management individually. Flexibility and usability result from a pre-built data management process and interface; the quicker you assemble and clean up the data, the easier the data will start producing value for the business.

Multiple Systems

When a company runs several processes, data processing becomes a problem. As previously stated, this may include ERP, CRM, e-commerce, or any other software framework. It’s also usual for many companies to use several systems to accomplish the same job. Different ERPs may be used by different divisions or corporate agencies operating under the same corporate name. This is especially true when it comes to mergers and acquisitions.

 

Many businesses would like to perform reports against historical data stored in a defunct database. Since migrating accurate transactional data to a new ERP system is not always feasible, many companies use a workaround or simply go without, leaving important legacy data out of their existing reporting systems. Multiple data models are invariably present when multiple software systems are involved. A clear report detailing all of the company’s customers becomes a little more complex. If one ERP system has different tables for clients and vendors, while the other merges them into a single table (using a single field to classify them as customers, vendors, or both). Before loading data into a centralized repository with a uniform approach of the customer, you’ll need to extract and transform data from those two ERP systems. The process must include a type of translation in which data structures and semantic models are aligned.

Extracting, Transforming, and Loading Data

The term “ETL” refers to the method of processing, converting, and loading data into a central repository. ETL is one of the most important aspects of a data warehouse, and it’s necessary for businesses who want to provide dependable, scalable, and reliable reporting. A data warehouse that embraces a complete view of data from across the enterprise, irrespective of which system it came from, is the end product of a very well ETL process.

 

This procedure often connects records that are spread through different systems. It is normal, for example, to designate master records with unique identifiers that aren’t always consistent across two or more systems. The central repository must link those two documents and classify them as the same individual to create reports that provide a full image of that customer.

Diverse Options

You’ll be confused if you search “BI solutions”, attend a related tradeshow, or read quite a lot of BI reports. There are several options available. But how do you know which approach to business intelligence is right for you?

The solution is to avoid putting the cart before the horse. First, assess the requirements. Evaluate them from a market and a technological standpoint, and then use the results of that exercise to guide the quest for approaches and solution providers.

Self-Service Reporting and Data Visualization

The second important aspect of good data management is to make information readily available to users across the enterprise. Provide them with resources that allow them to innovate and add value to the company. In fact, data visualization tools are becoming a strong tool for informing, aligning, and encouraging leaders across entire organizations. Data visualization tools are now simpler to deploy, maintain, and use than ever before.

 

Until recently, installing and maintaining a data warehouse facilitated a significant investment in highly specialized technical services. A reliable computing infrastructure capable of handling the necessary workloads. Legacy tools necessitated a thorough understanding of the source data as well as meticulous preparation ahead of time to decide how to use the resulting data. Modern data visualization tools are extremely efficient and adaptable, requiring far less advanced IT knowledge. Many of the tasks associated with designing dashboards, graphs, and other visualizations can now be performed by frontline users who communicate with the data daily.

Good Data Management with Jet Analytics

Both aspects of the data management process as described here, are provided by Jet Analytics from Global Data 365. For starters, it offers a robust framework for constructing a data warehouse. With developing and managing the ETL method, bringing data from various fragmented systems under one roof for simple, relevant reporting and analysis. Along with that, Jet Analytics provides a robust reporting package that allows practically everyone in the company to create powerful visual dashboards, analyses, and ad hoc analysis.

 

To find out more about how Jet Analytics can help your company manage the complexity of multiple data sources, contact us.

Get 30 days free license for Jet Reports.

Share this blog on:

Search Blog

About Us

Global Data 365 is composed of highly skilled professionals who specialize in streamlining the data and automate the reporting process through the utilization of various business intelligence tools.

Follow us on:

Interact Live with Dashboards

Increase efficiency and deliver success now with Microsoft Power BI. Enjoy a 20% discount on all Power BI services.

dashboards

Subscribe to Our Newsletter

Why Is Good Data Management Essential For Data Analytics? Read More »